On-chip Technology Independent 3-d Mod- Els for Millimeter-wave Transmission Lines with Bend and Gap Discontinuity

نویسندگان

  • G. A. Wang
  • W. Woods
  • H. Y. Ding
  • E. Mina
چکیده

Although the discontinuity structures in the microstrip transmission lines such as a gap and bend have been largely studied, the three-dimensional edge effects, skin effects and metal losses have hardly been analyzed. In this paper, modeling of transmission line with bend and gap discontinuity with equation based process technology independent method are developed. The effect of the signal layer thickness is fully included in the model. Gap model is verified with EM simulation and implemented in BiCMOS technology on Silicon substrate. The bend is modeled with transmission line with effective length for the discontinuity area, and the equations have been generated. The bend model is compared with EM simulations, existing bend model generated with curve-fitted method and measured results. Gap and bend are enabled as library device in a 0.13μm SiGe BiCMOS process design kit. Both bend and gap device have a scalable layout pattern and a schematic symbol, which allows users to choose them with different dimensions and metal stacks. In addition, the models can be migrated into other process technologies with different metal options. Very good match have been achieved among model, EM simulation and measurements for different process technologies and metal stacks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low-Power Testing of Losses in Millimeter-Wave Transmission Lines for High-Power Applications.

We report the measurement of small losses in transmission line (TL) components intended for high-power millimeter-wave applications. Measurements were made using two different low-power techniques: a coherent technique using a vector network analyzer (VNA) and an incoherent technique using a radiometer. The measured loss in a 140 GHz 12.7 mm diameter TL system, consisting of 1.7 m of circular c...

متن کامل

High-power millimeter-wave rotary joint.

The rotary joint is a useful microwave component that connects a fixed part to a rotatable part. This study systematically analyzes the effect of the discontinuity on the interface of a rotary joint for several waveguide modes. Simulation results indicate that the transmission of the TE(01) mode is independent of the geometry of the joint, and thus is ideal for such application. A rotary joint ...

متن کامل

Miter Bend Loss and Higher Order Mode Content Measurements in Overmoded Millimeter - Wave Transmission

High power applications require an accurate calculation of the losses on overmoded corrugated cylindrical transmission lines. Previous assessments of power loss on these lines have not considered beam polarization or higher order mode effects. This thesis will develop a theory of transmission that includes the effect of linearly polarized higher order modes on power loss in overmoded corrugated...

متن کامل

Gallium Phosphide IMPATT Sources for Millimeter-Wave Applications

The potentiality of millimter-wave (mm-wave) double-drift region (DDR) impact avalanche transit time (IMPATT) diodes based on a wide bandgap (WBG) semiconductor material, Gallium Phosphide (GaP) has been explored in this paper. A non-sinusoidal voltage excited (NSVE) large-signal simulation method has been used to study the DC and high frequency characteristics of DDR GaP IMPATTs dsigned to ope...

متن کامل

The Millimeter-wave Properties of Superconducting Microstrip Lines

We have developed a novel technique for making high quality measurements of the millimeter-wave properties of superconducting thin-film microstrip transmission lines. Our experimental technique currently covers the 75−130 GHz frequency range. The method is based on standing wave resonances in an open ended transmission line. We obtain information on the characteristic impedance, phase velocity,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010